Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Transl Med ; 21(1): 48, 2023 01 25.
Article in English | MEDLINE | ID: covidwho-2234832

ABSTRACT

BACKGROUND: Drug-target interaction (DTI) prediction has become a crucial prerequisite in drug design and drug discovery. However, the traditional biological experiment is time-consuming and expensive, as there are abundant complex interactions present in the large size of genomic and chemical spaces. For alleviating this phenomenon, plenty of computational methods are conducted to effectively complement biological experiments and narrow the search spaces into a preferred candidate domain. Whereas, most of the previous approaches cannot fully consider association behavior semantic information based on several schemas to represent complex the structure of heterogeneous biological networks. Additionally, the prediction of DTI based on single modalities cannot satisfy the demand for prediction accuracy. METHODS: We propose a multi-modal representation framework of 'DeepMPF' based on meta-path semantic analysis, which effectively utilizes heterogeneous information to predict DTI. Specifically, we first construct protein-drug-disease heterogeneous networks composed of three entities. Then the feature information is obtained under three views, containing sequence modality, heterogeneous structure modality and similarity modality. We proposed six representative schemas of meta-path to preserve the high-order nonlinear structure and catch hidden structural information of the heterogeneous network. Finally, DeepMPF generates highly representative comprehensive feature descriptors and calculates the probability of interaction through joint learning. RESULTS: To evaluate the predictive performance of DeepMPF, comparison experiments are conducted on four gold datasets. Our method can obtain competitive performance in all datasets. We also explore the influence of the different feature embedding dimensions, learning strategies and classification methods. Meaningfully, the drug repositioning experiments on COVID-19 and HIV demonstrate DeepMPF can be applied to solve problems in reality and help drug discovery. The further analysis of molecular docking experiments enhances the credibility of the drug candidates predicted by DeepMPF. CONCLUSIONS: All the results demonstrate the effectively predictive capability of DeepMPF for drug-target interactions. It can be utilized as a useful tool to prescreen the most potential drug candidates for the protein. The web server of the DeepMPF predictor is freely available at http://120.77.11.78/DeepMPF/ , which can help relevant researchers to further study.


Subject(s)
COVID-19 , Deep Learning , Humans , Molecular Docking Simulation , Semantics , Drug Discovery/methods , Proteins
2.
Applied Economics Letters ; : 1-12, 2022.
Article in English | Taylor & Francis | ID: covidwho-2062654
3.
Brief Bioinform ; 23(5)2022 09 20.
Article in English | MEDLINE | ID: covidwho-2017729

ABSTRACT

Drug-drug interactions (DDIs) prediction is a challenging task in drug development and clinical application. Due to the extremely large complete set of all possible DDIs, computer-aided DDIs prediction methods are getting lots of attention in the pharmaceutical industry and academia. However, most existing computational methods only use single perspective information and few of them conduct the task based on the biomedical knowledge graph (BKG), which can provide more detailed and comprehensive drug lateral side information flow. To this end, a deep learning framework, namely DeepLGF, is proposed to fully exploit BKG fusing local-global information to improve the performance of DDIs prediction. More specifically, DeepLGF first obtains chemical local information on drug sequence semantics through a natural language processing algorithm. Then a model of BFGNN based on graph neural network is proposed to extract biological local information on drug through learning embedding vector from different biological functional spaces. The global feature information is extracted from the BKG by our knowledge graph embedding method. In DeepLGF, for fusing local-global features well, we designed four aggregating methods to explore the most suitable ones. Finally, the advanced fusing feature vectors are fed into deep neural network to train and predict. To evaluate the prediction performance of DeepLGF, we tested our method in three prediction tasks and compared it with state-of-the-art models. In addition, case studies of three cancer-related and COVID-19-related drugs further demonstrated DeepLGF's superior ability for potential DDIs prediction. The webserver of the DeepLGF predictor is freely available at http://120.77.11.78/DeepLGF/.


Subject(s)
COVID-19 Drug Treatment , Pattern Recognition, Automated , Drug Interactions , Humans , Knowledge Bases , Neural Networks, Computer
4.
Anal Chem ; 94(6): 2926-2933, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1721378

ABSTRACT

Recombinase polymerase amplification (RPA) is a useful pathogen identification method. Several label-free detection methods for RPA amplicons have been developed in recent years. However, these methods still lack sensitivity, specificity, efficiency, or simplicity. In this study, we propose a rapid, highly sensitive, and label-free pathogen assay system based on a solid-phase self-interference RPA chip (SiSA-chip) and hyperspectral interferometry. The SiSA-chips amplify and capture RPA amplicons on the chips, rather than irrelevant amplicons such as primer dimers, and the SiSA-chips are then analysed by hyperspectral interferometry. Optical length increases of SiSA-chips are used to demonstrate RPA detection results, with a limit of detection of 1.90 nm. This assay system can detect as few as six copies of the target 18S rRNA gene of Plasmodium falciparum within 20 min, with a good linear relationship between the detection results and the concentration of target genes (R2 = 0.9903). Single nucleotide polymorphism (SNP) genotyping of the dhfr gene of Plasmodium falciparum is also possible using the SiSA-chip, with as little as 1% of mutant gene distinguished from wild-type loci (m/wt). This system offers a high-efficiency (20 min), high-sensitivity (6 copies/reaction), high-specificity (1% m/wt), and low-cost (∼1/50 of fluorescence assays for RPA) diagnosis method for pathogen DNA identification. Therefore, this system is promising for fast identification of pathogens to help diagnose infectious diseases, including SNP genotyping.


Subject(s)
Nucleic Acid Amplification Techniques , Recombinases , Interferometry , Nucleic Acid Amplification Techniques/methods , Nucleotidyltransferases , Plasmodium falciparum/genetics , Sensitivity and Specificity
5.
Molecules ; 26(1)2020 Dec 24.
Article in English | MEDLINE | ID: covidwho-1044927

ABSTRACT

The novel coronavirus disease (2019-nCoV) has been affecting global health since the end of 2019, and there is no sign that the epidemic is abating. Targeting the interaction between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and the human angiotensin-converting enzyme 2 (ACE2) receptor is a promising therapeutic strategy. In this study, surface plasmon resonance (SPR) was used as the primary method to screen a library of 960 compounds. A compound 02B05 (demethylzeylasteral, CAS number: 107316-88-1) that had high affinities for S-RBD and ACE2 was discovered, and binding affinities (KD, µM) of 02B05-ACE2 and 02B05-S-RBD were 1.736 and 1.039 µM, respectively. The results of a competition experiment showed that 02B05 could effectively block the binding of S-RBD to ACE2 protein. Furthermore, pseudovirus infection assay revealed that 02B05 could inhibit entry of SARS-CoV-2 pseudovirus into 293T cells to a certain extent at nontoxic concentration. The compoundobtained in this study serve as references for the design of drugs which have potential in the treatment of COVID-19 and can thus accelerate the process of developing effective drugs to treat SARS-CoV-2 infections.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Protein Interaction Domains and Motifs/drug effects , SARS-CoV-2/metabolism , Surface Plasmon Resonance/methods , Triterpenes/pharmacology , Viral Proteins/metabolism , HEK293 Cells , Humans , Protein Binding
6.
Molecules ; 26(1):57, 2021.
Article in English | ScienceDirect | ID: covidwho-984996

ABSTRACT

The novel coronavirus disease (2019-nCoV) has been affecting global health since the end of 2019, and there is no sign that the epidemic is abating. Targeting the interaction between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and the human angiotensin-converting enzyme 2 (ACE2) receptor is a promising therapeutic strategy. In this study, surface plasmon resonance (SPR) was used as the primary method to screen a library of 960 compounds. A compound 02B05 (demethylzeylasteral, CAS number: 107316-88-1) that had high affinities for S-RBD and ACE2 was discovered, and binding affinities (KD, μM) of 02B05-ACE2 and 02B05-S-RBD were 1.736 and 1.039 μM, respectively. The results of a competition experiment showed that 02B05 could effectively block the binding of S-RBD to ACE2 protein. Furthermore, pseudovirus infection assay revealed that 02B05 could inhibit entry of SARS-CoV-2 pseudovirus into 293T cells to a certain extent at nontoxic concentration. The compoundobtained in this study serve as references for the design of drugs which have potential in the treatment of COVID-19 and can thus accelerate the process of developing effective drugs to treat SARS-CoV-2 infections.

7.
Transl Psychiatry ; 10(1): 268, 2020 08 04.
Article in English | MEDLINE | ID: covidwho-700320

ABSTRACT

Coronavirus disease 2019 (COVID-19) has been recognized as a global pandemic, and psychiatric institutions located in the epicenter of the epidemic in China are facing severe challenges in fighting the epidemic. This article presents the accumulated experience of the authors during the process of combating COVID-19 in a psychiatric hospital. The aim of this article is to provide a reference for psychiatric specialty hospitals and institutions that treat large populations of chronically ill patients in other parts of the world.


Subject(s)
Betacoronavirus , Coronavirus Infections/complications , Coronavirus Infections/prevention & control , Hospitals, Psychiatric , Infection Control/methods , Mental Disorders/complications , Pandemics/prevention & control , Pneumonia, Viral/complications , Pneumonia, Viral/prevention & control , COVID-19 , China , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL